1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
| import numpy as np import matplotlib.pyplot as plt from testCases_v2 import * import sklearn import sklearn.datasets import sklearn.linear_model from planar_utils import plot_decision_boundary, sigmoid, load_planar_dataset, load_extra_datasets
def layer_sizes(X, Y): """ Arguments: X -- input dataset of shape (input size, number of examples) Y -- labels of shape (output size, number of examples)
Returns: n_x -- the size of the input layer n_h -- the size of the hidden layer n_y -- the size of the output layer """ n_x = X.shape[0] n_h = 4 n_y = Y.shape[0] return (n_x, n_h, n_y)
def initialize_parameters(n_x, n_h, n_y): """ Argument: n_x -- size of the input layer n_h -- size of the hidden layer n_y -- size of the output layer
Returns: params -- python dictionary containing your parameters: W1 -- weight matrix of shape (n_h, n_x) b1 -- bias vector of shape (n_h, 1) W2 -- weight matrix of shape (n_y, n_h) b2 -- bias vector of shape (n_y, 1) """
np.random.seed(2)
W1 = np.random.randn(n_h, n_x) * 0.01 b1 = np.zeros((n_h, 1)) W2 = np.random.randn(n_y, n_h) * 0.01 b2 = np.zeros((n_y, 1))
assert (W1.shape == (n_h, n_x)) assert (b1.shape == (n_h, 1)) assert (W2.shape == (n_y, n_h)) assert (b2.shape == (n_y, 1))
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
def forward_propagation(X, parameters): """ Argument: X -- input data of size (n_x, m) parameters -- python dictionary containing your parameters (output of initialization function)
Returns: A2 -- The sigmoid output of the second activation cache -- a dictionary containing "Z1", "A1", "Z2" and "A2" """ W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"]
Z1 = np.dot(W1, X) + b1 A1 = np.tanh(Z1) Z2 = np.dot(W2, A1) + b2 A2 = sigmoid(Z2)
assert (A2.shape == (1, X.shape[1]))
cache = {"Z1": Z1, "A1": A1, "Z2": Z2, "A2": A2}
return A2, cache
def compute_cost(A2, Y, parameters): """ Computes the cross-entropy cost given in equation (13)
Arguments: A2 -- The sigmoid output of the second activation, of shape (1, number of examples) Y -- "true" labels vector of shape (1, number of examples) parameters -- python dictionary containing your parameters W1, b1, W2 and b2
Returns: cost -- cross-entropy cost given equation (13) """
m = Y.shape[1]
logprobs = np.multiply(np.log(A2), Y) + np.multiply(np.log(1 - A2), 1 - Y) cost = -np.sum(logprobs) / m
cost = np.squeeze(cost) assert (isinstance(cost, float))
return cost
def backward_propagation(parameters, cache, X, Y): """ Implement the backward propagation using the instructions above.
Arguments: parameters -- python dictionary containing our parameters cache -- a dictionary containing "Z1", "A1", "Z2" and "A2". X -- input data of shape (2, number of examples) Y -- "true" labels vector of shape (1, number of examples)
Returns: grads -- python dictionary containing your gradients with respect to different parameters """ m = X.shape[1]
W1 = parameters["W1"] W2 = parameters["W2"]
A1 = cache["A1"] A2 = cache["A2"]
dZ2 = A2 - Y dW2 = np.dot(dZ2, A1.T) / m db2 = np.sum(dZ2, axis=1, keepdims=True) / m dZ1 = np.dot(W2.T, dZ2) * (1 - np.power(A1, 2)) dW1 = np.dot(dZ1, X.T) / m db1 = np.sum(dZ1, axis=1, keepdims=True) / m
grads = {"dW1": dW1, "db1": db1, "dW2": dW2, "db2": db2}
return grads
def update_parameters(parameters, grads, learning_rate=1.2): """ Updates parameters using the gradient descent update rule given above
Arguments: parameters -- python dictionary containing your parameters grads -- python dictionary containing your gradients
Returns: parameters -- python dictionary containing your updated parameters """ W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"]
dW1 = grads["dW1"] db1 = grads["db1"] dW2 = grads["dW2"] db2 = grads["db2"]
W1 = W1 - learning_rate * dW1 b1 = b1 - learning_rate * db1 W2 = W2 - learning_rate * dW2 b2 = b2 - learning_rate * db2
parameters = {"W1": W1, "b1": b1, "W2": W2, "b2": b2}
return parameters
def nn_model(X, Y, n_h, num_iterations=10000, print_cost=False): """ Arguments: X -- dataset of shape (2, number of examples) Y -- labels of shape (1, number of examples) n_h -- size of the hidden layer num_iterations -- Number of iterations in gradient descent loop print_cost -- if True, print the cost every 1000 iterations
Returns: parameters -- parameters learnt by the model. They can then be used to predict. """
np.random.seed(3) n_x = layer_sizes(X, Y)[0] n_y = layer_sizes(X, Y)[2]
parameters = initialize_parameters(n_x, n_h, n_y) W1 = parameters["W1"] b1 = parameters["b1"] W2 = parameters["W2"] b2 = parameters["b2"]
for i in range(0, num_iterations):
A2, cache = forward_propagation(X, parameters)
cost = compute_cost(A2, Y, parameters)
grads = backward_propagation(parameters, cache, X, Y)
parameters = update_parameters(parameters, grads)
if print_cost and i % 1000 == 0: print("Cost after iteration %i: %f" % (i, cost))
return parameters
def predict(parameters, X): """ Using the learned parameters, predicts a class for each example in X
Arguments: parameters -- python dictionary containing your parameters X -- input data of size (n_x, m)
Returns predictions -- vector of predictions of our model (red: 0 / blue: 1) """
A2, cache = forward_propagation(X, parameters) predictions = (A2 > 0.5)
return predictions
def main(): np.random.seed(1)
X, Y = load_planar_dataset()
plt.scatter(X[0, :], X[1, :], c=Y.reshape(X[0, :].shape), cmap=plt.cm.Spectral)
shape_X = X.shape shape_Y = Y.shape m = X.shape[1]
parameters = nn_model(X, Y, n_h=4, num_iterations=10000, print_cost=True)
plot_decision_boundary(lambda x: predict(parameters, x.T), X, Y) plt.title("Decision Boundary for hidden layer size " + str(4)) plt.show()
predictions = predict(parameters, X) print('Accuracy: %d' % float( (np.dot(Y, predictions.T) + np.dot(1 - Y, 1 - predictions.T)) / float(Y.size) * 100) + '%')
main()
|